
A Protocol for Robust and Efficient Service
Discovery in Large, Highly Mobile Radio Networks

Magnus Skjegstad
University of Oslo

Oslo, Norway
E-mail: moskjegs@ifi.uio.no

Frank T. Johnsen, Trude Hafsøe, Ketil Lund
Norwegian Defence Research Establishment (FFI)

Kjeller, Norway
E-mail: {frank-trethan.johnsen, trude.hafsoe, ketil.lund}@ffi.no

Abstract—Existing service discovery mechanisms for ad hoc
networks are often designed with one specific network type in
mind. Solutions capable of handling highly mobile nodes usually
have high bandwidth requirements, particularly as the number
of nodes increases. The bandwidth requirement can be reduced
by locally caching state information, but this increases the risk
of nodes having outdated state information when mobility is
high. Some solutions avoid these two issues by tightly coupling
service discovery with the routing mechanism itself. However,
this requires that nodes are homogeneous on the network layer.

We propose a solution that leverages the special properties
inherent in broadcast-based radio networks. In such networks,
every node within transmission range will hear a transmission, be
it unicast or broadcast. Each node therefore aggregates relevant
service information and broadcasts it at regular intervals. Unnec-
essary transmissions are suppressed by efficiently synchronizing
local state information.

In this paper, we describe the Mist-protocol, a robust and
efficient adaptive service discovery protocol, that supports large,
highly mobile networks consisting of heterogeneous nodes. We
test the protocol in large scale simulations in both static and
mobile environments. Finally, we show that it is feasible to
actually implement the design by providing a proof-of-concept
prototype, which has been evaluated in a small scale experiment.

I. INTRODUCTION

The NATO Network Enabled Capability (NNEC) feasi-
bility study has identified Web services as a key enabler
for NNEC [1]. Currently, Web services technology is in
widespread use in civil systems. The technology is designed
for use in fixed infrastructure networks, and can also func-
tion in ad hoc networks in an office environment. However,
challenges arise when we attempt to utilize the technology in
military radio networks. Such networks are significantly differ-
ent from enterprise networks, in that they rely on specialized
military communications hardware rather than civil commer-
cial products. In general, we can divide military networks in
three categories, depending on the hardware being used [2]:

1) Strategic networks.
2) Tactical deployed networks.
3) Tactical mobile networks.
One of the main challenges related to the usage of Web

services in and across such heterogeneous military networks
is the ability to discover available services. The large varia-
tions in capabilities in these networks mean that successfully
deploying Web services requires solutions that can take these

variations into account. Each network type needs a service
discovery mechanism that is specifically designed for the
properties of that network, and pervasive discovery across
network boundaries can then be achieved through the use of
service discovery gateways [3].

Mian et al. [4] classify networks based on size and mobility,
and give recommendations for what type of service discovery
solutions that fit each network type. From their classification
we can see that there exist solutions that work in networks
of different sizes provided that mobility is moderate or low.
For high mobility networks, the available solutions are only
suitable for small networks. A discovery solution supporting
nodes ranging from low to high mobility in large radio
networks remains an unsolved issue that we address in this
paper with our novel Mist-protocol.

II. RELATED WORK

In previous research, we have designed a service discovery
mechanism, «Service Advertisements in MANETs» (SAM),
that can be employed in small, highly dynamic mobile ad hoc
networks (MANETs) [5]. Also, we have developed and exper-
imented with a solution called Search+ for service discovery
across large deployed tactical networks [6]. These mechanisms
are intended for use in networks where the standardized Web
services discovery mechanisms (e.g., WS-Discovery [7]) do
not function well, such as military tactical networks.

The protocol by Sailhan et al. [8] supports discovery of Web
services in MANETs. It is based on a backbone of cooperating
directories that are deployed in a multi-hop ad hoc network.
The protocol has been implemented as a Java prototype, which
can operate over a one-hop or multi-hop ad hoc network. The
prototype is built on IEEE 802.11b, and uses «Web Service
Definition Language» [9] (WSDL) for service descriptions and
SOAP [10] for service invocation. Since the solution is based
on a backbone of registries, it can be categorized as a peer-to-
peer (P2P) discovery mechanism with overlay support, which
is unsuitable for highly mobile networks.

«Service-oriented Peer-to-Peer Architecture» (SP2A) is a
lightweight service oriented framework for P2P based resource
sharing in grid environments, proposed by Amoretti et al. [11].
It relies on JXTA ([11], references therein) as the underlying
P2P overlay which is based on a semi-structured protocol. This
makes it unsuitable for networks with high mobility.

pService [12] is a P2P-based service discovery mechanism
based on a structured overlay (Chord). This mechanism does
not support mobility.

Suri et al. [13], [14] propose a Gnutella-like P2P network for
resource and service discovery in MANETs. Their approach
uses flooding to disseminate service information in a propri-
etary format. To our knowledge, the protocol has not been
tested in networks with more than a limited number of nodes.

Bloom filters [15] have been used for information recon-
ciliation in earlier works, in particular [16] and [17]. These
mechanisms focus on parallel delivery of content streams in
overlay networks and are optimized for collaborative distri-
bution of large data elements. Mist is different from these
protocols in that it is tailored for distribution of singular small
data elements (advertisements) in mobile radio networks.

III. THE MIST-PROTOCOL

The Mist-protocol is a generic mechanism for informed
delivery of singular data elements. In this paper, we focus
on its application as a Web service discovery mechanism. In
practice, it could be used to disseminate any type of data that
can be represented as a single network message.

Mist’s core functionality is a subscription-based distribution
mechanism for advertisements. The advertisements can be
seen as small units of information, categorized according to
interest. Based on the interest, expressed as topics, nodes
can ask their neighbors to only send advertisements they are
interested in.

In this section we give a general overview of the distribution
mechanism before we proceed to describe the two message
types used in Mist; the Subscription message and the Adver-
tisement message. Finally, we describe the algorithms used to
process and distribute these messages.

A. Message distribution

Messages in Mist are distributed using a single-hop broad-
cast mechanism provided by the network layer. Each Mist-
enabled node always uses broadcast to distribute information,
even when there is a single recipient. This is based on the
observations that; a) in radio networks, unicast is based on
broadcast messages, and b) even if there is a single recipient,
other nodes within radio range may have an interest in the
same information. As unicast and broadcast essentially have
the same cost in wireless networks, Mist is based purely on
broadcast.

Multi-hop dissemination is handled by the algorithm itself,
enabling Mist to function in networks without a working
routing mechanism. Each node periodically consults the list
of topics that its neighbors are interested in, selects which
advertisements that should be distributed and broadcasts them
to all nodes within radio range. Nodes also notify their
neighbors about which advertisements they have received to
reduce the amount of broadcast messages. The length of the
update intervals are based on the radio range and movement
speed of each node and is further described in section III-D.

To support sparsely connected networks, our algorithm uses
a store-carry-forward mechanism. This means that we take
advantage of node mobility to increase the dispersion of
advertisements in the network. When a node physically moves
from one position to another, it automatically relays relevant
information from its previous location. This enables the use
of carrier-nodes that can be used to carry information between
networks without direct radio contact. Similarly, when a node
loses contact with the network, the remaining neighbors caches
information on its behalf for a given time period or until
contact is re-established. Nodes may themselves adjust how
long neighbors should store information on their behalf by
specifying longer or shorter timeouts in their Subscription
message, as described in the next section.

B. The Subscription message

Each node running Mist periodically sends a Subscription
message, containing information about which topics it is
interested in and for how long. Each topic is a unique text
string that categorizes information the node is interested in.
In a Web services environment where nodes are interested in
services, a topic is typically the namespace (or namespaces) a
service belongs to. Topics may also be based on well-known
unique identifiers (e.g. UUIDs or GUIDs). When a node sends
a Subscription message to its neighbors, it must include the
set of topics it is interested in. This set may include wildcards
(e.g. all topics that start with "no.ffi") and regular expressions.

Each topic in the Subscription message is associated with
a time-to-live (TTL) value. This value determines how far, in
hops, the topic request should be propagated. When a node
receives a subscription for a new topic, the topic is added
to a local set of topics and the TTL value is decreased. If
the TTL becomes 0, the topic is discarded. The remaining
topics with TTL > 0 are included in future subscriptions sent
to neighboring nodes. The TTL is handled at the application
level by Mist, and must not be confused with the network level
TTL field in the IP header.

As an example, Node A is interested in Topic 1 and Node
B is interested in Topic 2. Node A adds Topic 1 to its
Subscription message with TTL=3. The Subscription message
is broadcast on the network medium and received by Node
B. Node B adds Topic 1 to its local set of topics, but with
TTL=2 (decreased by 1). The topics Node B is interested in
are now Topic 1 (with TTL=2) and Topic 2 (with TTL=3).
Node B will in turn send its own Subscription message with
both topics included. We have shown in our earlier work that
this mechanism is effective, even with low TTL-values [6]. It
should be noted that the TTL-value follows the topic request
and not the Subscription message itself.

The Subscription message includes an acknowledgment
field, which contains the unique identifiers of advertisements it
has received. The sender only needs to include advertisements
that matches the topics it subscribes to, since these are the
only advertisements that neighboring nodes will broadcast.
The topics a node is interested in includes subscriptions

from nearby neighbors with a decreased TTL, as previously
described.

The acknowledgment field allows neighboring nodes to
avoid retransmitting advertisements to subscribers. Nodes that
move to a new area of the network are able to simultaneously
notify neighbors of their presence and inform the new neigh-
bors about which information it has already received. Since
state can be transferred in a single Subscription message the
protocol is very robust to physical network disruptions like
partitioning. It is also able to quickly adapt to changes in the
topology. To limit the size of this field it is represented as a
Bloom filter. A Bloom filter with a reasonable rate of false
positives (0.00819) requires only 10 bits per stored element.
Bloom filters and the acknowledgment mechanism are further
discussed in Section III-F.

The full content of the Subscription message is shown in
Table I.

TABLE I
SUBSCRIPTION MESSAGE

Field Description
sourceNodeId A unique identifier of the subscribing node.
topics A list of topics the subscribing node is

interested in. Each topic is associated with a
time-to-live value that describes the distance
to the closest node that requested this topic.

subscriptionTimeout A timeout value in seconds. When the time-
out expires the subscription is terminated
(unless it is renewed).

position The sender’s geographical position (op-
tional).

acknowledgment A Bloom filter containing the identifiers of
the already received advertisement.

After receiving Subscription messages, the node has an
overview of which advertisements neighboring nodes are
interested in. Based on this overview, the node broadcasts
Advertisement messages periodically.

C. The Advertisement message

Each node creates a set of advertisements containing the
information it wants to make available. This information may
for instance be a set of service descriptions (e.g. WSDLs). A
single Advertisement message may include information about
one or several services.

The contents of the Advertisement message is shown in
Table II.

An Advertisement message is uniquely identified by the
set (sourceNodeId, version). All Advertisement messages must
include this set. The source node identifier may be the node’s
IP address, but this is not a requirement. As Mist uses network
broadcast, it does not rely on knowing the IP addresses of the
participating nodes. It is however important that the same node
identifier is not shared between multiple nodes.

A version number is included to enable nodes to send
updates to existing advertisements. Upon receiving two Ad-
vertisement messages with identical identifiers, the receiver
should discard the message with the lowest version number.

TABLE II
ADVERTISEMENT MESSAGE

Field Description
sourceNodeId A unique identifier (e.g. IP address) of the

node that created the Advertisement.
version A version number that is incremented when

the Advertisement is changed and needs to
be redistributed.

topics A list of topics the Advertisement covers.
timeout Life-time in seconds.
position Geographical location of node that sent the

advertisement (optional).
data Additional data elements, e.g. full service

descriptions as WSDLs or QoS information.
This field is implementation-specific.

The Advertisement message also includes a list of topics
covered by the advertisement. While the topics in the Sub-
scription message may contain wildcards, the topics in the
advertisements must be exact. Note that TTL-values are not
included here, as these are only applicable to Subscription
messages.

The timeout field is used to describe how long the in-
formation stored in the advertisement is relevant. After this
timeout has expired, the advertisement should be dropped by
all nodes. To avoid the need for clock synchronization between
participating nodes, this timeout is based on the number of
seconds the receiving node has stored the advertisement. When
the Advertisement message is forwarded between nodes, the
holding-time is subtracted from the timeout in the forwarded
copy. The timeout does not account for transfer and processing
times and should be considered an approximated value.

As Mist works independently of the routing mechanism, an
advertisement could have been received from a node that is
unreachable through the network layer. The optional position
field enables recipients to move towards areas where full
connectivity on the network layer may be available. E.g., when
Mist is used for service discovery, moving into the same area
as the node that sent a service description may be required to
be able to invoke the service.

Finally, the Advertisement message includes the data-
element. The data-element contains the information element
the creator wishes to distribute, e.g. service descriptions. For
Web services, it may include full service descriptions (e.g.
WSDLs) in networks with high bandwidth or simple keyword-
based Bloom filter descriptions in disadvantaged grids. An
implementation using Mist to distribute WSDLs efficiently is
discussed in Section V.

D. Algorithms

1) Sending a new packet: A network packet in Mist con-
tains an optional Subscription message and zero or more
Advertisements messages. At regular intervals, each node
consults its internal data structures for new information to
broadcast. Each node considers if it should send a new
Subscription message and if there are Advertisements that
need to be sent to the neighbors.

A Subscription message is added to the packet if one or
more of the following criteria are true:

• The topics we are interested in have changed. This can
be triggered by the node itself or by neighbors changing
their topics.

• A new acknowledgment needs to be sent. This happens
when new or updated advertisements have been received.

• A Subscription message has been received from a new
node. New neighbors should quickly be notified that we
are present.

• If no messages have been sent for a specified interval a
Subscription-message should be sent to notify neighbors
that we are still alive.

• If we have moved a distance exceeding our radio range.
Neighbors in the new area must be notified of our
presence.

Advertisement-messages are added to the packet if we have
one or more advertisements that one or more valid subscribing
nodes are interested in.

Algorithm 1 getValidSubscriptions()
validSubscriptions← ∅
for all s ∈ Subscriptions do
age← currentT ime()− s.lastUpdated
timeout← s.message.subscriptionT imeout
if s.message.position 6= ∅ then
distance← calculateDistance(s.message.position)

else
distance = 0

end if
if age < timeout and s.retries < maxRetries and
distance < radioRange then
validSubscriptions = validSubscriptions+ s

end if
end for
return validSubscriptions

The algorithm that determines if a subscription is valid is
shown in Algorithm 1. A subscription is valid if a) it has not
timed out, b) it is sent from a node within our radio range
and c) the retry counter is lower than the maximum number
of retries. The retry counter is increased by one each time we
send advertisements to this node and reset to 0 each time we
receive a response (e.g. a Subscription-message with updated
acknowledgments). This limits the number of times we send
information to nodes that we have lost contact with.

After a list of valid subscriptions has been gathered, each
known advertisement is tested to see if it matches one of the
subscriptions, as shown in Algorithm 2. A node is considered
interested in the advertisement if it a) matches one or more
topics the node is interested in and b) the advertisement has
not been previously acknowledged by the node.

When a match is found, the advertisement is added to
a list of candidate advertisements. Candidate advertisements
are then removed randomly until the number of elements

Algorithm 2 getAdsToSend()
adsToSend← ∅
for all ad ∈ Advertisements do

for all subscription ∈ getV alidSubscriptions() do
if ad.topics ∈ subscription.topics then

if ad 6∈ s.acknowledgments then
adsToSend = adsToSend+ ad

end if
end if

end for
end for
while count(adsToSend) > maxAdsPerPacket do
removeRandomAd(adsToSend)

end while
return adsToSend

are less than a predefined value. Combined with the fact
that messages are only sent at regular intervals, this allows
the algorithm to limit the maximum bandwidth required to
disseminate advertisements.

The messages that are ready to be sent are finally combined
into a single packet and broadcast to immediate neighbors in
the network. At this point the retry counter is increased for
each neighbor that is interested in one of the advertisements.

2) Receiving a new packet: When a new packet is received,
the following actions are performed:

• Register that the node that sent the packet is still alive.
Set send retry counter to 0.

• If a Subscription-message is present, update or add ac-
knowledgments and topics in the subscriptions database
for the sending node.

• If one or more Advertisements are present, update or add
them to the local repository.

E. Setting the beacon interval

Each node must periodically broadcast a beacon to notify
its neighbors that they are still present or that they have moved
to a new area. The beacon in Mist is a Subscribe-message that
is sent either when a) 60 seconds have passed since the last
message was sent or b) the node has moved more than its radio
range. When a node is moving, the speed is calculated and the
beacon update interval is adjusted accordingly. The beacon
interval of a moving node can be calculated using Equation 1,
where BI is the beacon interval, r is the radio range in meters
and s is the speed in m/s. PT is the (worst-case) processing
time in seconds required to process the beacon and send a
reply. The resulting beacon interval is intended to be high
enough for a mobile node to be able to notify neighbors of
its presence as well as receiving at least one response before
moving to a new area.

BI =
(r
s

)
− PT (1)

Assuming a processing time of 2 seconds, a mobile node
moving at 1 m/s with radio range of 25 meters, would be

sending a Subscription message every 23rd second.

F. Reducing false positives

As our distribution mechanism is based on using Bloom
filters for acknowledgments, there is always a small proba-
bility that we falsely acknowledge an advertisement before
it has been transferred. The probability of this happening
corresponds to the probability of a false positive in the Bloom
filter. This probability p is determined by the number of bits in
the filter m relative to the number of inserted elements n and
the number of hash functions used k, as shown in Equation 2.

PFP =
(
1− e−k n

m

)k
(2)

As an example, using the parameters m/n = 10 and k =
7, we can achieve a reasonably low p of 0.00819. In other
words, when the number of bits in the Bloom filter is 10
times larger than the number of inserted elements, we must
use 7 distinct hash functions on each inserted element to
maintain a 0.00819 probability of false positives. This results
in less than 1 falsely acknowledged message per 100 messages
sent, which can be considered reasonable. Additionally, since
each node is listening to traffic sent to other neighbors, the
chance of receiving a message even when it has been falsely
acknowledged is high.

IV. EVALUATION

We have evaluated Mist in simulations using ShoX [18],
an event-driven MANET simulator written in Java. Since we
focus on Web services, we have used SOAP-over-UDP [19]
(without retry messages) for delivery of Subscription- and
Advertisement-messages.

For our simulations we used ShoX’ built-in 802.11b support
with radio range set to 25 meters and interference set to
50 meters. When interference occurs, affected packets are
dropped. The mobility model is random waypoint with fixed
speed and no pause time. We tested our algorithm with 250
nodes in an area of varying size. The smallest area was 156 x
157 meters, which equals an average degree of 20 - i.e. each
node had 20 reachable neighbors on average. The largest area
we tested was 700 x 700 meters, equaling an average degree
of 1 node. All the configurations we tested are shown in Table
III. The simulations end after 120 seconds. The algorithm
is configured to send at most one packet per second and at
most 10 advertisements in each packet. Each advertisement
has a randomly generated data element of 200 bytes, except
for degree 10 where we have included a 2500 byte element to
see how this affects the bandwidth usage. For the bandwidth
experiments we have also tested 50 and 100 advertisements
per packet.

A. Static environments

Although Mist is created for mobile environments, a simu-
lation of stationary nodes provides a good impression of what
can be expected of the mechanism. A well connected static
network can be seen as a best case scenario, as mobility com-
plicates the communication pattern. For sparsely connected

TABLE III
EVALUATED CONFIGURATIONS

Area (m) Deg. Nodes Speeds (m/s) Msg./packet Ad. size
157x156 20 250 0, 1, 3, 5 10 200
181x181 15 250 0, 1, 3, 5 10 200
221x221 10 250 0, 1, 3, 5 10, 50, 100 200, 2500
313x313 5 250 0, 1, 3, 5 10 200
443x443 2.5 250 1, 3, 5 10 200
700x700 1 250 1, 3, 5 10 200

Fig. 1. Global search results for 250 randomly positioned stationary nodes.
The success rate represents total received vs. available advertisements. We
can see that the success rate reaches 100% after less than 30 seconds for
well-connected networks (degree >= 10).

networks, however, the mechanism relies on mobility as is
shown in the next section.

Figure 1 shows the ratio of advertisements received from
other nodes over time. As each node publishes exactly one
advertisement, 250 received advertisements equals a ratio of
1.

As we can see, the results vary depending on the average
degree of the network. In well connected environments (degree
>= 10), each node has a full overview of the network after 20
to 40 seconds. For lower degrees, the received advertisement
ratio never reaches 1. This is expected, as lower degrees tend to
produce isolated clusters in the topology. We have not included
degrees lower than 5 in the graph shown here, as they show
the same tendency.

To verify that the mechanism works well within isolated
areas of the network on lower degrees, we ran a second
simulation with a modified success criteria. In this simulation,
the received advertisement ratio is 1 when a node has received
all advertisements from reachable nodes. A node is considered
reachable if it is possible to create one or more paths in the
network that eventually reaches the node, e.g. nodes that would
be reachable with an optimal routing algorithm. The results
are shown in Figure 2. As we can see, Mist provides full
advertisement distribution within the isolated clusters.

Figure 3 shows how the average SOAP message size varies
with the maximum number of advertisements per message and

Fig. 2. Local search results for 250 randomly positioned nodes in a static
environment. When nodes only consider advertisements from nodes that are
reachable through one or more hops, the success rate reaches 100% also for
lower degrees.

Fig. 3. Average SOAP message size in bytes for average degree 10 with no
mobility. Maximum number of advertisement messages per packet is set to
10, 50 or 100 for messages of 200 bytes and 10 for messages of 2500 bytes.
We can see that the bandwidth consumption is relative to these values. After
60 seconds without traffic a beacon message is sent, which leads to the small
increase in SOAP messages at around 80 seconds.

the advertisement size in a static network with degree 10. 10
advertisements of 200 bytes per packet (200 x 10) has the
lowest bandwidth requirements at around 3000 bytes/second in
the initial period. The extra overhead is caused by the included
Subscription message as well as by the SOAP message format.

We can see that after about 30 seconds, messages no longer
need to be sent until the beacon message is transmitted 60
seconds later. The initial traffic ends when the algorithm
reaches full advertisement distribution, as seen in Figure 1. By
increasing the advertisement size, the bandwidth consumption
also increases.

Fig. 4. Ratio of advertisements delivered when the nodes are moving at 1
m/s. Due to the mobility, Mist is now able to distribute the advertisements to
all nodes with average degree 5.

Fig. 5. Ratio of advertisements delivered when the nodes are moving at 5 m/s.
The increased mobility allows Mist to distribute advertisements to networks
with average degree as low as 2.5 and 1.

B. Mobile environments

Due to the store-carry-forward mechanism incorporated in
the Mist protocol, nodes can carry data with them when
they move between network partitions. This has the effect
of allowing full advertisement distribution even in scarcely
connected networks. The time it takes for the advertisements to
be fully distributed depends on how fast the nodes are moving
and the average degree of the network.

Figure 4 shows the average advertisement distribution over
time when the nodes are moving at 1 m/s. This corresponds
to normal walking speed. As we can see, the movement
enables better advertisement distribution at lower degrees.
With 5 neighbors on average, Mist is able to reach 100%
advertisement distribution within 100 seconds.

Figure 5 shows how the advertisements are distributed
when the nodes are moving at 5 m/s. This speed corresponds

Fig. 6. Average SOAP message size in bytes for average degree 10 with
nodes moving at 5 m/s.

to 18 km/h. We can see that the increased mobility helps
advertisement distribution and that an average degree of 2.5
gives 100% distribution after 100 seconds. An average degree
of 1 gives an 85% distribution after 120 seconds, which we
consider acceptable.

Figure 6 shows the average SOAP message size for varying
packet sizes at degree 10 with 5 m/s movement. We can
see that the results are similar to the results for static net-
works shown in Figure 3. The movement triggers periodic
Subscribe-messages that produce a steady traffic of around
500 bytes/second. The Subscribe-messages are sent with a rate
determined by Equation 1, described in Section III.

Using Equation 1, having a node radio range of 25 meters
moving at 5 m/s would require a BI = 5 − PT . In our
simulation we have used a PT of 2 seconds, resulting in a
BI = 3. Updating every 3 seconds is bandwidth intensive, as
we can see in Figure 6. To reduce the bandwidth consumption
the speed would have to be lowered or the radio range
increased, as described in Section III-E. A radio range of
150 meters and movement of 5 m/s would result in a beacon
interval of 28 seconds, which would bring the bandwidth use
much closer to the static results. Similarly, a radio range of
1000 meters and movement at 20 m/s results in a beacon every
50 seconds.

V. PRACTICAL EXPERIMENT

Through the simulations discussed in Section IV, we have
shown that Mist is a resource efficient and scalable protocol
for information delivery, suitable for use in large mobile radio
networks.

We have implemented a service discovery mechanism using
the Mist-protocol, called Mist-SD. In Mist-SD, services are
described by a simple service description coupled with a
hash-value that represents the WSDL. The WSDLs are then
distributed as separate advertisements. By separating service
descriptions from WSDLs, nodes may choose not to subscribe
to full WSDL-files when they are not needed. WSDLs may

also be pre-distributed to save bandwidth. The default message
format is SOAP-over-UDP (with 0 retries for transmission),
but the implementation also supports a binary format for
bandwidth constrained environments. The implementation is
written in Java.

We have used the implementation for a simple proof-of-
concept experiment. The experiment shows that the Mist
protocol is feasible to implement and extend, and that it
functions as expected on actual hardware. For the experiments
we used five laptops running Windows XP SP3, using built-
in 802.11b WiFi cards configured in ad hoc mode (i.e., using
only P2P connections, no central base station required). We
did not configure a routing protocol, meaning that no network
level multi-hop communication was possible (i.e., all multi-
hop forwarding was performed at the application level by our
Mist protocol). This was done to show the independence of
Mist from the routing layer, as well as proving that it could
function as the simulations promised by utilizing only node
mobility and broadcast range for information dissemination.

The experiment consisted of two deployed clusters (immo-
bile units) and a mobile unit that would go in and out of reach
of the two clusters. The clusters were out of radio range of
each other, and could not communicate directly. This setup
allowed us to test all aspects of Mist, i.e. the subscriptions
for topics as well as the timeout of advertisements. First,
we configured subscriptions for all nodes. Then, we deployed
some services in the clusters: The first cluster consisted of
two laptops where one offered a couple of services and the
other offered none. Since the two machines in this cluster were
in radio range of each other, both machines were aware of
the services offered in that area. The second cluster, deployed
in a separate location with no link to the first cluster, also
consisted of two laptops, here each laptop offered one service.
The mobile node started out of radio range of both clusters,
offering one service. Moving around, first via the first cluster,
then via the second, the node was able to discover and store-
carry-forward service information from one cluster to the next.
The advertisement timeouts ensured that outdated information
was removed from each node’s service cache after the timeout
period had expired.

The experiment was successful, thus showing the proper
functioning and implementational feasibility of the Mist pro-
tocol design. Our prototype implementation is currently being
packaged for release as an open source project, and will be-
come available for download from "http://mist-sd.googlecode.
com/".

VI. CONCLUSION

The Mist protocol is a novel, generic information distri-
bution protocol for large, highly mobile radio networks. We
have designed and implemented the protocol and evaluated
it in a service discovery scenario using SOAP-over-UDP.
The protocol is very robust and resilient to disruptions and
partitioning. It has limited bandwidth requirements, making it
suitable for tactical networks. The protocol is fully functional
without a working routing mechanism and is implemented

on the application layer, enabling it to function on any unit
capable of radio broadcast without modifications to lower
layers. The protocol supports nodes with varying radio range.
Optional positioning information allows service consumers to
move geographically closer to a discovered service to improve
connectivity.

VII. FUTURE WORK

In this paper we have used Mist for service discovery. In this
context, further work with regards to gateway functionality is
required. If time and resources permit it we will evaluate the
protocol in large-scale real-life experiments. We will continue
our work to improve Mist with focus on mobile networks with
low bandwidths. We will also consider implementing it for
other scenarios where the protocol may be suitable.

REFERENCES

[1] P. Bartolomasi, T. Buckman, A. Campbell, J. Grainger, J. Mahaffey,
R. Marchand, O. Kruidhof, C. Shawcross, and K. Veum, “NATO network
enabled capability feasibility study,” Version 2.0, October 2005.

[2] F. T. Johnsen, T. Hafsøe, and M. Skjegstad, “Web services and service
discovery in military networks,” The 14th International Command and
Control Research and Technology Symposium (ICCRTS), Washington
DC, USA, 2009.

[3] F. T. Johnsen, J. Flathagen, and T. Hafsøe, “Pervasive service discovery
across heterogeneous tactical networks,” in IEEE Military Communica-
tions Conference (MILCOM 2009), Oct. 2009, pp. 1–8.

[4] A. N. Mian, R. Baldoni, and R. Beraldi, “A survey of service discovery
protocols in multihop mobile ad hoc networks,” in IEEE Pervasive
computing, January-March 2009, pp. 66–74.

[5] F. T. Johnsen, “An NFFI-based Web service discovery mechanism
for tactical networks,” The Military Communications and Information
Systems Conference (MCC 2009), Prague, Czech Republic, September
2009.

[6] M. Skjegstad, U. Roedig, and F. T. Johnsen, “Search+: A resource
efficient peer-to-peer service discovery mechanism,” IEEE MILCOM,
Boston, MA, USA, October 2009.

[7] V. Modi and D. Kemp (eds.), “Web services dynamic discovery (ws-
discovery) version 1.1,” http://docs.oasis-open.org/ws-dd/discovery/1.1/
wsdd-discovery-1.1-spec.pdf, July 2009.

[8] F. Sailhan and V. Issarny, “Scalable service discovery for MANETS,”
in Third IEEE International Conference on Pervasive Computing and
Communications (PERCOM). IEEE Computer Society, March 2005,
pp. 235–244, ISBN 0-7695-2299-8.

[9] W3C, “Web Services Description Language (WSDL) 1.1,” http://www.
w3.org/TR/2001/NOTE-wsdl-20010315, W3C Note 15 March 2001.

[10] ——, “SOAP Version 1.2,” http://www.w3.org/TR/soap12, W3C Rec-
ommendation 27 April 2007.

[11] M. Amoretti, F. Zanichelli, and G. Conte, “SP2A: A service-oriented
framework for P2P-based grids,” Proceedings of the 3rd International
Workshop on Middleware for Grid Computing (MGC05), Grenoble,
France, 2005.

[12] W. Lv and J. Yu, “pservice: Peer-to-peer based web services discovery
and matching,” in Systems and Networks Communications, 2007. ICSNC
2007. Second International Conference on, aug. 2007, pp. 54 –54.

[13] N. Suri, M. Rebeschini, M. Breedy, M. Carvalho, and M. Arguedas,
“Resource and service discovery in wireless ad-hoc networks with agile
computing,” in Military Communications Conference, 2006. MILCOM
2006. IEEE, oct. 2006, pp. 1 –7.

[14] N. Suri, M. Marcon, R. Quitadamo, M. Rebeschini, M. Arguedas,
S. Stabellini, M. Tortonesi, and C. Stefanelli, “An adaptive and efficient
peer-to-peer service-oriented architecture for manet environments with
agile computing,” in Network Operations and Management Symposium
Workshops, 2008. NOMS Workshops 2008. IEEE, april 2008, pp. 364
–371.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[16] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content
delivery across adaptive overlay networks,” Networking, IEEE/ACM
Transactions on, vol. 12, no. 5, pp. 767 – 780, oct. 2004.

[17] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High-
bandwidth data dissemination using an overlay mesh,” Proc. ACM SOSP,
pp. 282–297, 2003.

[18] J. Lessmann, T. Heimfarth, and P. Janacik, “ShoX: An Easy to Use
Simulation Platform for Wireless Networks,” in UKSIM ’08: Proceed-
ings of the Tenth International Conference on Computer Modeling and
Simulation. Washington, DC, USA: IEEE Computer Society, 2008, pp.
410–415.

[19] OASIS, “Soap-over-udp version 1.1,” http://docs.oasis-open.org/ws-dd/
soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html, OASIS Stan-
dard, 1 July 2009.

