
Distributed Chat in Dynamic Networks
Magnus Skjegstad
University of Oslo

Oslo, Norway
E-mail: magnus.skjegstad@ifi.uio.no

Ketil Lund, Espen Skjervold, Frank T. Johnsen
Norwegian Defence Research Establishment (FFI)

Kjeller, Norway
E-mail: {ketil.lund, espen.skjervold, frank-trethan.johnsen}@ffi.no

Abstract—Chat is becoming increasingly important in military
operations. XMPP is the de facto chat protocol in use in NATO
today. XMPP is intended for use in stable networks with high bit
rate (e.g., LAN, Internet) and does not function well in military
tactical networks where resources are scarce and disruptions
are frequent. In this paper, we present our novel decentralized
solution specially tailored for multi user chat in tactical mobile
ad-hoc networks. Our protocol is implemented in Java, and then
tested in emulated network conditions. Compatibility with XMPP
is achieved through the use of a gateway, so that compatibility
with existing deployed chat infrastructure is ensured. Our tests
show that our chat solution has a higher message delivery rate
in poor conditions than XMPP.

I. INTRODUCTION

Text based chat is a fast, efficient and non-intrusive way
of communicating, it consumes little resources, and is easy
to use. Chat also provides an important presence service, as
well as simultaneous communication between many people.
These characteristics have made chat services very popular
on the Internet, and there exists a large number of different
chat services. Examples are IRC (Internet Relay Chat), Google
Talk, Jabber, Windows Live and ICQ.

Since communication is essential within C2 (Command
and Control), chat services have also become popular in the
military domain. Chat services have been used in military
operations on several occasions. Two examples of this are
Operation Enduring Freedom and Operation Iraqi Freedom [1],
where chat was also used in special operations. The fact that
NATO addresses chat in both the NATO NEC Feasibility Study
and through the Core Enterprise Services Working Group
(CESWG) shows that chat has become an essential C2 tool.

Common for popular chat services on the Internet is that
they are server-based, i.e., all clients must connect to a server,
which in turn relays the message to the recipient(s), possibly
via other servers. For all such connections, TCP is the overrid-
ing protocol. This poses no problems in wired networks, which
provide stable topologies and high bandwidths. For mobile ad-
hoc networks (MANETs), on the other hand, end-to-end TCP
connections can be difficult to establish and maintain.

Mist is an experimental protocol for publish/subscribe in
MANETs. It leverages node mobility and application layer
epidemic routing to achieve information dissemination without
relying on a functioning routing layer or IP multicast support.
Mist is resource efficient, and designed to overcome the
limitations of networks with scarce resources. It can be used
for any publish/subscribe application, and has earlier shown

promise when applied as a service discovery protocol for
Web services [2]. In this paper, we present a decentralized
multi user chat solution for tactical MANETs where an im-
proved version of Mist is used as the message dissemination
protocol. Thus, by defining decentralized chat in terms of
a publish/subscribe application, we are able to achieve high
message delivery rates in disruptive environments.

The remainder of the paper is organized as follows: Section
II introduces related work. In Section III we present the design
of our chat solution, putting emphasis on the use of Mist, our
special purpose chat client, and an XMPP gateway used for
interoperability with deployed chat infrastructure. We evaluate
our solution in IV. Section V concludes the paper.

II. RELATED WORK

In the military domain, IRC has been one of the most widely
used chat protocols for C2. NATO has later chosen XMPP
as their standard for chat/instant messaging (IM)1, through a
system called JChat. Both IRC and XMPP are server based,
and require TCP connections between client and server to be
able to transfer messages. As described above, this makes them
less suitable for tactical networks, and consequently, there has
been some research activity focusing on how to enable chat
in MANETs.

In [3], the architecture of a mobile IM system based on
XMPP is presented. Each mobile node runs a distributed
server entity in addition to the IM client, and presence and
information dissemination is achieved using a protocol called
Passive Distributed Indexing. Only the presence dissemination
has been implemented, and the communication between the
servers uses TCP connections that are established using a (non-
specified) state of the art MANET protocol.

[4] proposes a Jabber proxy for disruption tolerant networks
(DTN), that enables standard Jabber clients to utilize DTN
by redirecting the Jabber traffic through the DTN stack. In
addition, it prevents TCP timeouts, and it allows group chat
messages to utilize last mile multicast. The authors have
performed a proof of concept evaluation, but no measurements
are presented.

In [5], a solution based on an XMPP gateway is proposed
by Tölle et al. A peer-to-peer based, server-less «tactical
chat» for use in the tactical domain can connect through this

1In the remainder of this document we will use chat and IM interchangeably,
although IM is sometimes viewed as a subtype of chat.



gateway and reach other, standard XMPP clients. The paper
focuses on the requirements of «tactical chat», and a future
implementation is outlined. No details are provided beyond the
choice of hardware and programming language. We adopt their
suggestion for a gateway approach in our work, thus enabling a
connection from our experimental decentralized chat solution
to interact with a deployed XMPP infrastructure.

The proposed solution in [5] has recently been implemented
by Aurisch et al. as an experimental solution called «Chat
and Instant Messaging for Tactical Environments» (CIM-TE)
[6]. CIM-TE provides secure group chat to a set of connected
devices.The CIM-TE protocol relies on IP multicast to func-
tion, meaning that it is limited to MANETs with IP multicast
support in the routing protocol. Thus, the main difference
to our solution is that while CIM-TE relies on underlying
IP multicast, Mist solves multicast on the application layer
and is thus suitable for use in any MANET, regardless of
the capabilities of the underlying network protocol. On the
other hand, CIM-TE addresses security issues explicitly, which
Mist does not. Currently, Mist assumes the network is secured
on lower layers (e.g., link cryptography). Thus, this work is
complementary to ours in that it addresses different issues of
chat.

The work in [7] and [8] presents a solution called XO,
for using standard XMPP clients in server-less peer-to-peer
networks, as well as a gateway for connecting the server-less
network with standard XMPP networks. XO is realized as
a plugin to the Generic Unicast-to-multicast proxy (GUMP),
developed by the authors. The solution has been evaluated
in an emulated mobile environment, with different degrees of
connectivity. The results show that XO performs significantly
better than standard XMPP, but still there is a message loss
of 10 to 20% in medium and low connectivity scenarios. To
the best of our knowledge, an implementation of XO was not
available online for comparison at the time of writing.

[9] presents a server-less IM protocol for MANETs based
on ring routing (Virtual Ring Routing and MADPastry are
mentioned as examples) for message routing. In addition,
presence dissemination is handled using distributed hash ta-
bles storing status information together with the user name.
However, there is no information about implementations or
evaluations of the suggested solution.

III. DESIGN

Our chat implementation is written in Java and based on an
improved version of the Mist protocol. Mist is a distributed
publish/subscribe protocol for radio networks with mobility,
as described in [2]. In the following we briefly describe
the protocol, as well as our basic XMPP/Mist gateway. The
gateway is used to bridge networks using XMPP and Mist-
based chat.

A. The Mist protocol

In Mist, data is represented as «data elements». A data
element can be seen as a single unit of data of any size, e.g.
a file or a chat message. Compared to a network packet, the

data element can be larger and have a longer lifetime, typically
measured in minutes or hours. The data element is associated
with a topic, which allows it to be forwarded to subscribers.

When a data element is published, the publisher broadcasts
the data element along with the topic it is associated with to
other nodes within radio range. Neighboring nodes may then
forward the data element to nodes in other areas of the network
that are subscribing to the same topic.

Each node running Mist periodically broadcasts what it
subscribes to and which data elements it has seen. By keeping
track of already forwarded messages, the bandwidth consump-
tion is reduced.

The Mist protocol has two basic message types; the
Subscription-message and the Advertisement-message.

The simplest message is the Advertisement-message, which
is used to send the actual data element to other nodes.
The Advertisement-message contains the data element and
the topic it is associated with, as well as a few data fields
describing the creator. These data fields include the unique
identification number of the creator and a sequence number.
If the length of the data element should exceed the maximum
transmission unit (MTU) at the network layer, the data element
can be split into fragments of suitable sizes. In these cases, the
Advertisement-message also contains a fragment identifier.

The Subscription-message is broadcast within radio range
to notify neighbors about subscriptions a node is interested
in. It also doubles as a neighbor discovery mechanism and an
acknowledgment message. The two most important fields of
the Subscription-message is the list of subscriptions and the
acknowledgment-field.

The list of subscriptions contains a list of topics the node
subscribes to, as well as a distance counter for each topic.
The distance counter allows Mist nodes to control how far in
the network their subscriptions are propagated. When a node
receives a new Subscription-message it goes through the list
of subscriptions in the message and decrements each distance
counter by 1. Topics that have a distance counter greater than 0
are then added to the node’s own subscription list and included
in its next Subscription broadcast. The distance counter is thus
used to propagate subscription information outside the radio
range of each node.

To save bandwidth, the topic identifier in the subscription
list is stored as 32 bit checksums of a text string representing
the topic. Namespaces may be specified by inserting «.»’s
in the topic string, e.g. «no.ffi.messages». The topic is then
stored as three 32 bit checksums, one for each part of the
namespace. This storage method was chosen to allow for
wildcard subscriptions, e.g. one can subscribe to «no.ffi.*»
to receive all messages in the «no.ffi» namespace. This would
not be possible if the whole namespace was stored as a single
checksum.

Each node maintains a Bloom filter [10] with the identifiers
of the data elements it is currently storing. The Bloom filter
is included in the acknowledgment field of the Subscription-
message. With the help of the Bloom filter, other nodes are
able to determine with a known probability whether a node



has already received a given data element. As Bloom filters
produce false positives, the mechanism may result in too
few data elements being forwarded by other nodes. It will
however never result in the transfer of a data element that
has already been received. The false positive probability of
the Bloom filter can be adjusted so that it is very unlikely
that some of the data elements are never sent. Adjusting the
false positive probability is not always an easy task, as the
proper parameters depend on the number of new data elements
that are to be exchanged. To avoid having to approximate the
number of new data elements in advance, we make sure that
each Subscription-message contains a new Bloom filter. Over
time, the combined false positive probability of all the Bloom
filters converges absolutely to 0. Given infinite time and full
connectivity, all data elements are thus guaranteed to be deliv-
ered. This is an improvement over the original Mist-protocol,
where the same Bloom filter was sent in each Subscription-
message and the false positive probability remained constant.
Further details about this mechanism can be found in [11].

As a further optimization, nodes send Bloom filters with
very low false positive probability when there are no known
neighbors. This ensures that when new nodes are discovered,
as much information as possible will be transferred immedi-
ately. As nodes become aware of more neighbors, the false
positive probability of the Bloom filters is increased. This
is beneficial in dense networks, as it reduces the amount of
bandwidth required by the Subscription-message. Additionally,
when more nodes are sending Bloom filters in the same area it
increases the probability of data elements being sent. As Mist
uses opportunistic listening it does not matter if a data element
is sent to a node directly or just forwarded to a neighbor as
long as they both are within radio range of the sender.

B. Chat client

The chat client subscribes to two topics using Mist; a
message topic («no.ffi.messages») and a control channel topic
(«no.ffi.control»). New chat messages are published on the
message topic and distributed to all other nodes using the
mechanism described in the previous section. The control
channel topic is used for nick or name changes and to inform
the XMPP gateway of login credentials, as is explained in the
next section. Other topics could be added to support multiple
chat rooms.

C. XMPP gateway

We have developed a software gateway component to bridge
chat traffic between the static XMPP network and the the
mobile network running Mist. The gateway is deployed on
the same node as the XMPP server, and a TCP connection to
it is initiated and held open. This configuration is used under
the assumption that units in the field use (MANET) VHF/UHF
radios with short range but relatively high bandwidth, while
the reachback link is slow (e.g., an HF link). Work done
by Isode show that for XMPP over slow links, server to
server communication is the only viable solution [12]. Thus,
internally the fielded units use Mist-based chat, which is able

to handle both network partitions and continually changing
network topology, and at the same time they have a reachback
connection into an XMPP based chat room at, for instance,
the deployed HQ.

The gateway is configured to monitor a specific XMPP
multi user chat room (MUC) by logging on with usernames
and passwords provided by the Mist clients. The gateway
ensures that messages originated by clients in the static XMPP
network are relayed into the Mist network, and vice versa. This
deployment effectively merges the two chat networks, allowing
all clients to communicate across heterogeneous networks. The
gateway is implemented in Java, and utilizes Jive Software’s
Smack XMPP client API in order to integrate with the XMPP
server.

In addition to listening for chat messages originated in
the Mist network, the gateway also subscribes to the control
channel topic, listening for commands sent from the Mist
clients. Among the supported commands is a command for
submitting XMPP user login information. When the gateway
receives a chat message from a Mist-based client it performs
an internal lookup, logs on to the XMPP server using the
corresponding credentials, and posts the message on behalf of
the client. If no credentials are received prior to receiving a
message from a given client, the message is queued until the
credentials can be obtained.

IV. EVALUATION

The evaluation is performed using Linux containers (lxc)
and the topology is emulated using the network simulator NS-
3.

Linux containers can be seen as lightweight virtual ma-
chines. Each node runs within the same Linux kernel, but
has its own network stack and process space. The network
interface on each node is connected to the NS-3 driven topol-
ogy. NS-3 emulates the topology and the physical network
interface, i.e. the link layer and the physical layer. The setup
enables us to run actual implementations of the protocols we
evaluate, using the standard TCP/IP stack of the Linux kernel.
NS-3 is configured to use IEEE 802.11a wireless links, running
6 mbps OFDM.

In the XMPP experiments, an XMPP server (Prosody,
http://prosody.im/) is running on one of the nodes. Each
client produces chat messages at a regular interval and tries
to deliver them to a multi user chat room on the XMPP
server. When the message has been received by the server and
subsequently by all the other nodes, the message is considered
to have been delivered. If the node is unable to deliver
the messages immediately, it is stored in a local queue and
delivered when a connection to the XMPP server is available.
All communication with the XMPP server is compressed using
zlib compression, as specified in XEP-0138.

In the Mist experiments, an XMPP gateway is running on
one of the nodes. As with XMPP, each client produces chat
messages at a regular interval and the message is considered to
be delivered when it has been received by all the other nodes,
including the XMPP gateway node. Mist is set to produce



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 1. Static mesh topology used in the experiment described in Section
IV-A. Nodes are positioned 100 meters apart. The approximate radio range is
shown for node 11.

periodic beacon messages at 15 second intervals and chat
messages are published with a 2 minute timeout.

Each experiment is run for 660 seconds. During the first
600 seconds, chat messages of random lengths ranging from
1 to 30 characters are produced at a rate of 0.25 messages
per second on each node. Each chat message is prepended
a timestamp and a sequence number used for measurements.
The full message length is therefore from 17 to 49 characters.
The last 60 seconds of the experiment is a cool down period,
allowing the protocols to attempt to deliver any remaining
messages.

The XMPP experiments require a routing mechanism to
enable multihop connections to the server. For this, we ran
babeld (http://www.pps.jussieu.fr/ jch/software/babel/) on each
node, which is a Linux implementation of the BABEL routing
protocol. We chose BABEL over other protocols (e.g OLSR),
as recent work [13] has shown it to have lower convergence
time in mobile environments. Prior to starting the XMPP
experiments, the routing protocol is given 120 seconds to
converge. The Mist experiments are run without a routing
protocol, as neither routing nor multicast is required.

Bandwidth usage is measured by capturing outgoing traf-
fic from the network interface on each node and averaging
the traffic over 5 second intervals. All traffic sent by the
MAC address associated with the measured node and pro-
tocol is included. Additional traffic produced by the BA-
BEL routing protocol is not included in the XMPP results,
as this can vary depending on the chosen routing mecha-
nism. We used the tools tcpdump (http://www.tcpdump.org),
tcpstat (http://www.frenchfries.net/paul/tcpstat/) and tcpslice
(ftp://ftp.ee.lbl.gov/tcpslice.tar.gz) to capture and analyze the
results.

A. Static topology

In this experiment we test 16 nodes in a 4 x 4 mesh
topology. The nodes are positioned 100 meters apart. The
topology is depicted in Figure 1. The dotted circle around
node 11 depicts the approximate radio range. The nodes can
communicate directly with neighbors, except diagonally.

 0

 10000

 20000

 30000

 40000

 50000

 0  100  200  300  400  500  600  700

B
y
te

s
 p

e
r 

s
e
c
o
n
d

Time

XMPP - Bandwidth per second

Total
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16

Fig. 2. Bandwidth consumed by XMPP in the static topology shown in
Figure 1. Node 1 runs the XMPP server.

Fig. 3. Heat map showing the traffic distribution for the XMPP experiment.
The XMPP server in the upper left corner consumes the most bandwidth.

In Figure 2, the bandwidth usage is shown for XMPP. The
total bandwidth used by the network averages around 32000
bytes/sec, with peaks above 40000 bytes/sec. The outgoing
traffic on each node varies depending on the distance from
the XMPP server. Nodes closer to the server have to relay
more data on behalf of more distant nodes, thus increasing
their bandwidth usage.

Figure 3 shows how the produced traffic is distributed
among the nodes in one of the XMPP experiments. The upper
left node is running the XMPP server and consumes the most
bandwidth. As the distance form the server increases, the
bandwidth consumption decreases. At node 1 (the server node)
the bandwidth usage is 5700 bytes/sec on average. On node
16 (lower right), the bandwidth consumption is 214 bytes/sec.

The bandwidth results for Mist is shown in Figure 4. As we
can see, the average total bandwidth is less than half of the
total bandwidth required in the XMPP experiment. As Mist
uses synchronization to distribute messages, all nodes forward
approximately the same amount of traffic and there are no hot
spots in the topology.

The total bandwidth for all nodes in the XMPP and Mist



 0

 10000

 20000

 30000

 40000

 50000

 0  100  200  300  400  500  600  700

B
y
te

s
 p

e
r 

s
e
c
o
n
d

Time

MIST - Bandwidth per second

Total
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16

Fig. 4. Traffic produced by Mist in the static topology shown in Figure 1.
Node 1 runs the XMPP gateway.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  100  200  300  400  500  600  700  800

B
y
te

s
 p

e
r 

s
e
c
o
n
d

Time

XMPP vs MIST - Bandwidth per second

XMPP, total 16 nodes
MIST, total 16 nodes

Fig. 5. Total bandwidth for all nodes shown for Mist and XMPP.

experiment are compared in Figure 5.
In the static topology both Mist and XMPP delivered all the

chat messages in all of the experiments.

B. Mobility

We repeat the static experiment for different degrees of
mobility. First off, we test the protocols with the nodes moving
at 1 m/s, or 3.6 km/h - approximately slow walking speed.
The mobility model is random walk, with no pauses. The
experiment is repeated 10 times.

Table I shows the message delivery rate for both protocols.
In the static experiment, both protocols delivered all the
messages. As mobility increases, XMPP gradually delivers
fewer messages, and at 4 to 6 m/s, XMPP delivers 86.2% of
the messages. Mist delivers more than 99.5% of the messages
in all experiments, but is not able to deliver messages when
there are still partitions when the simulation ends. As mobility
increases, partitions lasts for shorter time periods, leading

TABLE I
MESSAGES DELIVERED

Protocol 0 m/s 1 m/s 2-4 m/s 4-6 m/s
Mist 100% 99.54% 99.99% 100%

XMPP 100% 95.77% 90.50% 86.20%

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700

M
e
s
s
a
g
e
s

Time

XMPP vs MIST - Messages received

Produced messages
Received messages, XMPP
Received messages, MIST

Fig. 6. Messages produced versus messages delivered in the mobile topology
with nodes moving at 1 m/s. Mist is able to recover from partitioning and
deliver all messages, while XMPP is unable to deliver all the messages within
the simulation period.

to higher success rate. At 4 to 6 m/s, Mist achieves 100%
message delivery.

In Figure 6, we can see the messages delivered over time
from one of the experiments with 1 m/s movement speed.
When the nodes move, partitions occur in the network. For
XMPP, this reduces the nodes ability to reach the server in
node 1. Although the XMPP clients are configured to store
the messages if they are not able to deliver them to the server,
some of the messages are too delayed for XMPP to be able
to recover them during the simulation period. As this result
shows, Mist recovers much faster than XMPP from network
partitioning. Both protocols were given 60 seconds to deliver
any remaining messages at the end of the experiment.

In Figure 7, the result from one of the experiments with
nodes moving randomly from to 2 to 4 m/s (7.2 to 14.4
km/h) is shown. As we can see, XMPP struggles to deliver
all messages at this speed. This is caused by the extra time
it takes for the routing protocol to converge once the network
has changed, as well as the stronger requirement for delivery
in XMPP. As described earlier, the XMPP client must have a
continuous route to the XMPP server to deliver the message
and each node must have a continuous route to the server to
receive it. Mist on the other hand, only requires a node to have
met another node that carries the information it is interested in.
The increased movement speeds helps Mist deliver messages
faster, as the network is partitioned for shorter periods of time.

Figure 8 shows the bandwidth requirements for Mist when
the nodes are moving from 2 to 4 m/s. The increase in
bandwidth compared to Figure 4 is caused by retransmissions
when nodes move out of radio range.

Table II shows the average message delivery delays for
both protocols. In the static network, Mist is generally slower
than XMPP, having delivery times at 1.32 seconds on average.
However, as the nodes begin to move, XMPP’s delivery times
increases dramatically. Again, it can be seen how the higher
mobility helps Mist to deliver messages faster. With 1 m/s
movement the average delay of Mist is 6.44 seconds, but at 4



 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700

M
e
s
s
a
g
e
s

Time

XMPP vs MIST - Messages received

Produced messages
Received messages, XMPP
Received messages, MIST

Fig. 7. Messages produced versus messages delivered in the mobile topology
with nodes moving at 2 to 4 m/s. XMPP is unable to deliver all messages,
while Mist delivers 100%.

 0

 10000

 20000

 30000

 40000

 50000

 0  100  200  300  400  500  600  700

B
y
te

s
 p

e
r 

s
e
c
o
n
d

Time

MIST - Bandwidth per second

Total
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16

Fig. 8. Bandwidth used by the Mist network when the nodes move at 2
to 4 m/s. The increase in bandwidth compared to Figure 4 is caused by an
increase in retransmissions due to nodes moving in and out of radio range.

to 6 m/s it is decreased to 2.39 seconds.

C. UAV message ferry

In this experiment we test how one fast moving node can
be used to transport messages between network partitions. We
deploy two groups, each having 6 nodes moving at 1 m/s
in an area of 150 x 150 meters. The groups are positioned
500 meters apart, outside of each others radio range. A node
representing a UAV moves between the groups. When the UAV
node comes within radio range of the nodes of one of the
groups, it sends any messages it has that the nodes in the
group are missing. Similarly, the nodes in the group responds

TABLE II
MESSAGE DELAYS IN SECONDS

Protocol Speed Avg Std. dev
Mist 0 m/s 1.324 0.788

XMPP 0 m/s 0.033 0.023
Mist 1 m/s 6.443 17.569

XMPP 1 m/s 29.285 60.922
Mist 2-4 m/s 2.771 5.690

XMPP 2-4 m/s 76.666 96.864
Mist 4-6 m/s 2.399 4.314

XMPP 4-6 m/s 101.008 109.905

3

4

1

5

6
2

10

11
7

8

9

12
UAV

Fig. 9. Topology with two groups with nodes moving at 1 m/s and a UAV
moving between them. The nodes are never able to connect directly to nodes
in the other group.

 0

 10000

 20000

 30000

 40000

 50000

 0  100  200  300  400  500  600  700
B

y
te

s
 p

e
r 

s
e
c
o
n
d

Time

MIST - Bandwidth per second

Total
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Node 10
Node 11
Node 12
Node 13

Fig. 10. Total bandwidth use in the UAV experiment. The spikes occur when
the UAV reaches one of the groups and starts exchanging messages.

with messages the UAV node is missing, allowing it to carry
them to the other group.

In the first experiment, it takes the UAV 30 seconds to
travel the 650 meters between the centers of each group. This
corresponds to a movement speed of 21.6 m/s, or approxi-
mately 78 km/h. There is at no point a continuous network
connection between the groups. The UAV node is configured
to send periodic Subscription-messages at 1 second intervals,
instead of 15 seconds as is used by the other nodes. This is to
be able to quickly discover the groups when they come within
radio range. The topology is shown in Figure 9.

Figure 10 shows the total bandwidth in the network. As
we can see, there are spikes in the traffic each time the UAV
arrives with new messages. This is shown more clearly in
Figure 11 where only the traffic sent from the UAV is shown.

Messages delivered over time is shown in Figure 12. Each
time the UAV reaches one of the groups, there is a sharp
increase in messages delivered. As we measure the time it
takes to deliver messages to all other nodes, there is a constant
delay corresponding to the time it takes for the UAV to travel
between the groups. During the last 60 seconds, when no more
messages are produced, Mist manages to deliver 100% of the
chat messages.

To verify that the protocol works at even higher speeds,
we repeat the experiment with a UAV node moving at 43.3
m/s, or 156 km/h. At this speed, the UAV is in contact with
the groups for approximately 8 to 9 seconds. This is shorter
than the minimum convergence time observed for several
common ad-hoc routing protocols [13]. In this experiment, the



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  100  200  300  400  500  600  700  800

B
y
te

s
 p

e
r 

s
e
c
o
n
d

Time

MIST UAV - Bandwidth per second

MIST UAV

Fig. 11. Bandwidth used by the UAV. As it reaches each group there is a
spike in traffic.

TABLE III
MESSAGES DELIVERED IN UAV EXPERIMENT

21.6 m/s 43.3 m/s
Total 100% 99.67%

Group A 100% 100%
Group B 100% 100%

Subscription-messages are sent from the UAV every second to
be able to discover the groups on the ground quickly.

Table III shows the average message delivery rates from the
UAV experiments. As we can see, all messages are delivered
when the UAV moves at 21.6 m/s. When the speed is doubled
to 43.3 m/s, some messages are lost, but we still achieve a
delivery rate of 99.67%.

V. CONCLUSION

Our chat client based on the improved Mist pub-
lish/subscribe protocol performs better in dynamic, mobile net-
works than XMPP in terms of bandwidth usage and message
delivery rates. Although XMPP is faster in static networks,
Mist is able to deliver more than 99% of the messages in
mobile networks at higher speeds than XMPP. We show that

 0

 500

 1000

 1500

 2000

 0  100  200  300  400  500  600  700

M
e
s
s
a
g
e
s

Time

MIST UAV - Messages received

Produced
Received

Fig. 12. Messages delivered over time in the UAV experiment. Each time
the UAV reaches one of the groups, there is a sharp increase in messages
delivered. The delay in message delivery corresponds to the time it takes the
UAV to travel the distance between the groups.

our solution works by evaluating it on a simulated network
topology, running full-featured software implementations of
the routing protocol, the XMPP server and the Mist middle-
ware. Finally, we demonstrate how a UAV traveling at speeds
up to 156 km/h is able to deliver messages between two
network partitions.

REFERENCES

[1] B. A. Eovito, “The impact of synchonous text-based chat on military
command and control,” in 11th ICCRTS Coalition Command and
Control in the Networked Era, Cambridge, UK, Sept 2006.

[2] M. Skjegstad, F. T. Johnsen, T. Hafsøe, and K. Lund, “Robust and
Efficient Service Discovery in Highly Mobile Radio Networks using
the MIST Protocol,” in MILCOM 2010. The 29th IEEE Military Com-
munications Conference, San Jose, CA, USA, November 2010.

[3] C. Lindemann and O. Waldhorst, “Epidemic dissemination of presence
information in mobile instant messaging systems,” in Kommunikation in
Verteilten Systemen (KiVS). Springer, 2005, pp. 29–40.

[4] R. Metzger and M. C. Chuah, “Opportunistic information distribution
in challenged networks,” in Proceedings of the third ACM workshop
on Challenged networks - CHANTS ’08. New York, NY, USA: ACM
Press, 2008, p. 97.

[5] J. Tölle, T. Ginzler, and P. Steinmetz, “Challenges of Instant Messaging
in Tactical Environments - Concepts and Practical Implementation,” in
Proceedings of NATO IST-083 Symposium on "Military Communications
with a special focus on Tactical Communications for Network Centric
Operations", Prague, Czech Republic, April 2008.

[6] T. Aurisch and P. Steinmetz, “Securely connecting instant messaging
systems for ad hoc networks to server based systems,” The 16th Inter-
national Command and Control Research and Technology Symposium
(ICCRTS), Quebec City, Canada, 2011.

[7] R. Lass, J. Macker, D. Millar, W. Regli, and I. Taylor, “XO: XMPP
overlay service for distributed chat,” in MILCOM 2010. The 29th IEEE
Military Communications Conference, San Jose, CA, USA, November
2010.

[8] R. Lass, J. Macker, D. Millar, and I. Taylor, “GUMP: adapting
client/server messaging protocols into peer-to-peer serverless environ-
ments,” in Proceeding of the 2nd workshop on Bio-inspired algorithms
for distributed systems. ACM, 2010, pp. 39–46.

[9] A. D. Urso, “A Serverless Instant Messaging Protocol for Mobile Ad
Hoc Networks,” 8th International Conference on Creating, Connecting
and Collaborating through Computing, pp. 71–75, 2010.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[11] M. Skjegstad and T. Maseng, “Low Complexity Set Reconciliation
using Bloom Filters,” in 7th ACM SIGACT/SIGMOBILE International
Workshop on Foundations of Mobile Computing (FOMC). San Jose,
CA, USA: ACM, June 2011.

[12] Isode, “M-Link and XMPP Performance Measurements over HF Ra-
dio using STANAG 5066 and IP,” http://www.isode.com/whitepapers/
xmpp-performance-hf-radio.html, Sept 2010.

[13] M. Abolhasan, B. Hagelstein, and J. C.-P. Wang, “Real-world perfor-
mance of current proactive multi-hop mesh protocols,” in 15th Asia-
Pacific Conference on Communications. Shanghai, China: IEEE, Oct.
2009, pp. 44–47.


