
Paper ID 900608
SEARCH+: A RESOURCE EFFICIENT PEER-TO-PEER SERVICE DISCOVERY

MECHANISM

Magnus Skjegstad
IFI, University of Oslo

Norway

Utz Roedig
InfoLab21, Lancaster University

United Kingdom

Frank T. Johnsen
Norwegian Defence Research Establishment

Norway

ABSTRACT
A recent feasibility study suggests that a Service

Oriented Architecture (SOA) will be central within the
NATO Network Enabled Capabilities information in-
frastructure. An important element of a SOA is the
service discovery process, but existing solutions are not
sufficient in military networks. We suggest to use a
robust Peer-to-Peer (P2P) network as a complement.
Unfortunately, available P2P search algorithms have
high bandwidth requirements which cannot be supported
by low-bandwidth links in tactical networks.

This paper describes a new search algorithm named
Search+ which is designed for tactical networks with
limited bandwidth resources. The evaluation of Search+
presented in this paper shows that it outperforms existing
search algorithms in terms of bandwidth consumption
while achieving comparable search success rates.

INTRODUCTION
A Service Oriented Architecture (SOA) is charac-

terised by its loose coupling, standardised protocols and
that it is web-enabled. As a result, a SOA is very flexible
and can handle situation and environment changes which
is useful in a military context. Appropriate solutions for
interaction between service consumers and producers in
a military SOA exist (see [1]). However, the service
discovery mechanisms that are currently available for
SOAs are not ideal for use in tactical environments.

The most common approach to implementing a SOA
is by using Web services. Existing Web services dis-
covery solutions such as UDDI registries [2] or the
ebXML registries [3] are based on a central registry
being available, thus introducing a single point of failure.
It is possible to increase robustness by configuring the
registries in a so-called federation, in which several
registries cooperate by replicating data between them.
This approach removes the single point of failure but
introduces a second severe problem. Registry replication
itself requires a lot of bandwidth which makes this

solution undesirable at the tactical level where bandwidth
is scarce [4]. However, it has to be noted that registry
replication is a viable option on a strategic level as
bandwidth is not a limiting factor.

In this paper we propose a novel service discovery ap-
proach for SOAs which can be of use in certain military
networks. We propose to implement service discovery
using a Peer-to-Peer (P2P) overlay network at the tactical
level, where the existing standardised solutions are not
ideal. P2P networks do not have a central entity and
therefore no single point of failure. In addition, we pro-
pose a novel P2P search algorithm named Search+ for
service discovery implementation. Search+ is designed to
conserve scarce network resources in tactical networks.
The specific contributions described in this paper are:

• Search+ Definition: A detailed specification of the
Search+ algorithm is presented.

• Search+ Evaluation: An implementation of a P2P
based service discovery mechanism is used to com-
pare Search+ with other existing search algorithms.

P2P BASED SERVICE DISCOVERY
The term peer-to-peer is used to describe networks

in which all nodes are treated equally. All nodes are
potentially capable of providing services and are also
involved in data forwarding. Commonly, a P2P network
is created by forming what is usually called a P2P
overlay on top of an existing network. The P2P overlay
network defines addressing and routing mechanisms and
enables nodes (peers) to exchange messages while hiding
details of the underlying networks. When a node within
the P2P network fails, messages among the remaining
nodes can still be exchanged and services provided by
the remaining nodes are still available. Thus, a P2P
network is highly robust which is a desired feature in
military applications.

As mentioned before, service discovery mechanisms
that are currently available for SOAs are not ideal for
use in tactical environments. Existing solutions are based



on a central registry being available for providers and
consumers, introducing a single point of failure. Thus,
instead of (or as a supplement to) a central registry
a P2P based discovery mechanism would be a better
choice. We therefore propose to use a P2P based system
to implement service discovery for SOAs in military
networks.

In a P2P based SOA each node can fulfil the role
of producer, consumer and registry simultaneously. A
node can provide a specific service and be a client of
services as well. Each node maintains a local registry
which contains information about the services provided
by the node. However, in most P2P networks the registry
content of a node will grow over time as the node learns
about services that neighbouring nodes provide. The
exact learning procedure depends on the P2P algorithms
used.

If a consumer requires a specific service it sends a
search request through the P2P overlay network. Each
node receiving this search request compares it with the
information in its local registry and sends a response to
the requester when a match is found. After processing a
search request a node forwards this request to neighbour-
ing nodes. The exact forwarding behaviour of request
messages is again dependent on the used P2P algorithms.
As no central registry exists, the single point of failure
regarding service discovery is eliminated in a P2P based
SOA.

Different P2P network types exist and it has to be
decided which type is suited to implement a P2P based
SOA. In general, P2P networks can be classified as
unstructured or structured. The two types differ in the
way the local registry on nodes is populated and how
search requests are routed in the overlay network.

In a structured P2P network specific nodes are used
to store specific service information. A node offering a
service informs a dedicated node for this service type
that the service is available. Hence, each node knows
where to direct a search request when looking for a
particular service type, which improves search accuracy
and speed. The P2P network implements repair strategies
for situations in which a node holding particular registry
information becomes unavailable. However, we argue
that structured P2P networks are not suitable for a mili-
tary SOA as the structured storage of registry information
introduces again single points of failure. In fact, such
systems are similar to a federation of central registries as
they are used in non-P2P SOAs. Examples of structured
P2P networks are Pastry [5], Chord [6], CAN [7] and
Tapestry [8].

In an unstructured P2P network nodes send search
requests through the overlay network. A node that has
a match in its local registry will send a response. In
the worst-case situation a search request has to be
broadcast to all nodes in the network before a match is
found. However, nodes can learn about services offered
by neighbouring nodes through observation of search
response messages. Hence, in a practical deployment
worst-case search efforts are rarely required. In addition,
the unstructured network has no single failure point.
As the motivation to use P2P techniques in SOA is to
increase reliability and to remove single points of failure,
an unstructured P2P network should be used. The most
prominent example of a protocol for unstructured P2P
networks is Gnutella [9].

SEARCH ALGORITHMS FOR P2P
NETWORKS

In this section search algorithms for unstructured P2P
networks are described and discussed. The search algo-
rithm is necessary to implement the registry functionality
of the P2P based SOA.

First, we describe the simple but commonly used
flooding search algorithm. We show that such a simple
algorithm is not useful for military networks as it is
not designed to conserve bandwidth. Second, we de-
scribe an existing search algorithm named ASAP which
was designed to reduce bandwidth consumption. Third,
we describe our own search algorithm named Search+
which is inspired by ASAP. Search+ is designed to
further reduce the bandwidth consumption of the service
discovery process. The described flooding and ASAP
algorithms are used in the evaluation for comparison with
our proposed Search+ algorithm.

Flooding

The flooding algorithm can be considered the most
basic search algorithm in P2P overlays. When a node
performs a search it will send the search criteria to
each of its neighbours together with a time-to-live (TTL)
value. The neighbours will decrease the TTL value and
forward the message to their neighbours, continuing this
process until the TTL value reaches 0. Each node that
has a service that matches the query will send a reply
back to the node that performed the search.

The flooding algorithm is simple to implement and has
low processing overhead. However, there is a chance that
a service is not found even if present. If a node providing
the service cannot be reached due to set TTL value a ser-
vice discovery might fail. In addition, flooding consumes



a large amount of bandwidth which is not desirable in a
tactical network. Obviously, the TTL value can be used
to balance search accuracy (discovery success rate) and
bandwidth consumption. However, even TTL restricted
flooding becomes too bandwidth intensive if a reasonable
accuracy is to be achieved (see evaluation in the next
section).

ASAP

Advertisement-based Search Algorithm for Unstruc-
tured P2P Systems (ASAP) [10] is an algorithm specif-
ically developed to reduce bandwidth consumption and
improve search accuracy in unstructured P2P networks.
The algorithm is considered proactive, meaning that
instead of waiting for search queries to arrive and then
respond to them, the nodes in the P2P network will
actively exchange indexes with information relevant to
their interests. The basis for the ASAP algorithm are
four observations made by the authors about file-sharing
P2P-networks on the Internet:

1) Large parts of the traffic in file-sharing P2P-
networks consist of search queries.

2) The rate at which queries are performed tends to
fluctuate with usage patterns.

3) Content shared on many nodes does not change
very often, if ever. Also, downloaders (i.e. clients)
do not usually further share the documents down-
loaded from other peers.

4) Interest clustering is common in file-sharing P2P
systems.

We argue that these observations also hold for service
discovery in tactical networks. The first point is gen-
erally valid for unstructured P2P networks, be it in a
tactical network or elsewhere. The second point would
correspond with the need to find and use services, and
this need would obviously not be constant, but rather
fluctuate with the needs of the execution of the current
military operation. The third point is also valid, because
a service being provided would most likely continue to
be available unless something were to happen to the node
(e.g. incapacitation or loss of network connectivity), and
services would only be consumed by the clients and not
shared (i.e. re-published) by them due to the nature of
Web services, where nodes are either a consumer or a
producer but usually not both. Finally, the fourth point
is a trait that can also be anticipated in tactical networks
— there different units will have different roles in an
operation, and depending on the role, the unit will need
to consume different information services. Thus, in an
operation, units in an area having similar needs will need

to access the same set of services, leading to interest
clustering.

When a node looks up a service, the node will first
inspect its local registry. The local registry contains a
list of service descriptions and node addresses indicating
where specific services are located. Each service descrip-
tion is stored as a Bloom filter [11] which is a dense
representation of a service (a set of bits representing hash
values of the service descriptor). When a match is found,
the node will know with a certain probability1 where the
service is located. Since this probability never reaches
100%, a message asking for confirmation needs to be
sent directly to the node providing the service. If the
node acknowledges the match, the search is considered
successful. If no match is found, the node will advertise
its need for a registry update to all its neighbours. Over
time, a node builds up a local registry that is able to
answer a nodes service discovery requests.

The nodes in the overlay synchronise their registries
by sending registry updates whenever their own registry
(the Bloom filters) change. These updates are generally
very small, consisting only of a few bytes per filter.
ASAP has no single point of failure as registry content
is propagated through the network. In addition, it has
low bandwidth requirements. This suggests that ASAP
is suitable for use in tactical networks. The authors of
ASAP performed simulations for evaluation. We have
implemented ASAP within a P2P network and have
performed numerous tests which show that ASAP is
indeed very bandwidth efficient compared to basic so-
lutions such as flooding. However, there is still room
for further improvement of the search technique, and
in the following section we introduce our own Search+
algorithm which can achieve a bandwidth to hit ratio that
is even better than that of ASAP.

Search+

Search+ follows many of the same principles as ASAP,
in that it uses advertisements with Bloom filters and a
similar search and confirmation mechanism. The idea in
Search+ is that each node will subscribe to advertise-
ments that match their interests.

Advertisements in Search+ contain a Bloom filter, a
node identifier and a version number. This is identical to
the full advertisements used in ASAP, and contains the
following fields:

1Two service descriptors might have the same bits set in the Bloom
filter. By defining the size of the filter and the number of hash
functions, the probability of a false positive can be determined.



• A Node ID, which is a unique identifier for the node
that created the advertisement.

• The Bloom filter, which contains a bit pattern used
to match keywords against the content held by the
producer.

• A list of Topics covered by the content in the Bloom
filter.

• A Version number that is incremented for each
change to the topics or Bloom filter fields.

a) Join: When a new node joins the network, the
algorithm described in Algorithm 1 is executed. Its task
is to inform the neighbouring nodes of the topics (types
of services) the new node is generally interested in. To
perform the Join operation a subscription message is
sent. The TTL value in this message determines how far
into the network the subscription request is sent. Note
that Search+ does not send service advertisements at this
point.

Algorithm 1 The Search+ join algorithm
//Send a subscription request to the new neighbour
I ← getOwnInterests()
N ← new node
sendSubscriptionRequest(N, I, ttl)

b) Maintenance: The maintenance process in
Search+ has two main functions; to process newly ar-
rived subscription requests and to publish service adver-
tisements.

In Algorithm 2, each new request is processed and
the specified interest is stored in a table. Each node
will remember the interests specified by each of its
neighbouring nodes.

Note that new subscription request messages are only
sent when nodes join or when a node’s interests change.
The request message always contains the topics (service
types) the node itself is interested in and the interests
specified by its neighbours. When a node receives a
subscription request message with TTL greater than 0 it
adds its own interests and its other neighbours’ interests
to the message before forwarding it.

New advertisements are published as described in
Algorithm 3. The algorithm steps through the list of
neighbours and checks for cached advertisements match-
ing one or more of their interests. After retrieving all
the relevant advertisements for node N , those that have
already been sent are removed from the set. The result
is then sent to N and subsequently added to the list of
advertisements that N has received.

Algorithm 2 The Search+ algorithm executed while
processing newly arrived subscription requests

//Process all subscription requests
for all r ∈ newly received requests do

N ← getSourceNode(r)
requestedInterest← getInterests(r)
ttl← getTTL(r)
storeSubscription(N, requestedInterest)
if ttl > 0 then

totalInterest← ∅
for all interest ∈ active subscriptions do

totalInterest← totalInterest ∪ interest
end for
forwardSubscriptionRequest(totalInterest, ttl −
1)

end if
end for

Algorithm 3 The Search+ algorithm used to publish
newly received updates

//Publish new advertisement to interested neighbours
for all s ∈ active subscriptions do

N ← getSubscribingNode(s)
I ← getNodeInterests(s)
sentAds← getSentAdvertisements(N)
updatedAds ← getAdvertisementsMatching(I) /∈
sentAds
sendUpdatedAvertisements(N,updatedAds)
storeLastSentAdvertisements(N, sentAds ∪
updatedAds)

end for

c) Search: The search process is described in Algo-
rithm 4. The local advertisement cache is first processed
for Bloom filters matching the search terms (the service
description). For each match that is found a confirmation
request is sent to the node possibly hosting the service. If
this fails the search ends as there is no fall back method
that could provide more search results. The only option
in such case would be to send a subscription message
with a higher TTL. However, such measures should only
be taken if deemed absolutely necessary as this action
has the potential to trigger substantial amounts of traffic.

Note that this behaviour distinguishes Search+ from
ASAP which requests new advertisements from neigh-
bours as a fall back mechanism. In the ASAP algorithm
this action gradually transports advertisements towards
the interested nodes. In the Search+ algorithm however,
this process takes place when advertisement subscrip-
tions are sent during the join process.



Algorithm 4 The Search+ search algorithm.
//Search for match
I ← getOurInterests()
K ← getSearchTerms()
R← ∅ {R will contain the results}
for all ad ∈ localAdsCache do

B ← getBloomFilter(ad)
if match(K, B) then

S ← getAdSource(ad)
sendConfirmationRequest(S, K)
if isConfirmed(S, K) then

R← R ∪ S
end if

end if
end for
return R

IMPLEMENTATION AND EVALUATION

To evaluate the proposed Search+ protocol we imple-
mented a P2P overlay. We used the Juno [12] framework
to implement the software for the P2P nodes. Juno is
a reconfigurable middleware for heterogeneous content
networking which simplifies the implementation of P2P
overlay networks.

As P2P network protocol we selected Gnutella [9].
The Gnutella protocol defines a basic set of message
types that can be used to create and maintain a P2P
overlay.

Standard Gnutella implements a simple flooding algo-
rithm as search algorithm. We also implemented ASAP
and Search+ as alternative search algorithms for our
Gnutella P2P overlay. Thus, we are able to compare
the performance of the three search algorithms: flooding,
ASAP and Search+.

In particular, we are interested in seeing if Search+
can improve the search hit rate while reducing bandwidth
consumption.

Evaluation Setup

For evaluation we used a P2P network with 100 nodes
offering 400 unique services. In the following paragraphs
we describe in detail the network configuration.

Services and Topics: Each node is sharing a number of
services identified by a service name. For the experiment
we generated 400 unique services grouped into 14 topics.
Each service is associated with one topic; services are
equally distributed over the available topics. Each node
in the overlay provides four unique services. Using
a high number of unique services during evaluation
stresses the network and the search algorithms. A low

number of services would yield lower bandwidth con-
sumption during evaluation, since less information needs
to be propagated. Thus, we chose a high number of
unique services to ensure that the results are significant.

We set nodes to be interested in topics that their own
offered services are in as well. This choice is based on
the assumption that nodes are more likely to request
services within the categories that they are offering.

Bloom Filter: When using the ASAP and Search+
algorithms, the Bloom filter size affects both, the query
success rate and the bandwidth consumption. A larger
filter increases the success rate, while requiring more
bandwidth.

We have chosen to have four unique services per node,
but in a real life scenario we expect that a few nodes
will have significantly more services than others. We also
expect that each node may use more than one keyword
to describe a service. If we assume that each node on
average will use four keywords to describe a service, and
that the node with the most services has 25 services, the
Bloom filter should be able to hold 100 keywords for
each peer. The filter size of 1000bit (128byte) selected
for the experiment achieves this goal and results in a
probability of a false positive of 0.00819 which we deem
to be acceptable.

Service Discovery: Due to the previously mentioned
interest clustering, nodes are assumed to search for
services relevant to their interests. Thus, in our evaluation
the nodes are configured to search for services that fall
within the same categories as they are interested in with
a probability of 0.9. In other words, 90% of the queries
from each node will be for services that have one of the
same topics as the node’s own interest. The remaining
10% are chosen randomly.

Network Topology: We expect a tactical network to
follow the principle of preferential attachment, where
connecting nodes will have a higher probability of con-
necting to nodes that already have many connections.
In a military network, it is also likely that the nodes
will form hierarchical clusters, due to the command
structure [13]. Based on these two arguments, we argue
that a real life topology form a scale free network with
a power law distribution, as described by Barabasi and
Alberts in [14].

The topology used in the experiments is a 100 node
Barabasi-Albert with an average degree of 3.94.

Time-To-Live (TTL): The TTL affects different mech-
anisms in each algorithm. In Gnutella, the TTL de-
termines how far the flooded query will travel before
being discarded. In ASAP, the TTL specifies how far



the advertisements are sent. In Search+, the TTL is
the number of hops the initial subscription request is
forwarded. Due to these differences, the TTL must be
chosen independently for each algorithm.

In [15], Portmann et al show that in a power law
distributed Gnutella network a TTL of 5 reaches more
than 95% of the network. The topology used in our
experiments also exhibits power law properties, and we
have therefore chosen to use TTL = 5 when using the
flooding search algorithm (standard Gnutella search).

The initial TTL value for ASAP is chosen based on
the results in [10], where they achieve optimal results
with a TTL of 6.

Search+’s TTL value specifies how far the subscription
requests will be sent, but after a while the paths that
advertisements follow in the overlay may be much longer
than this value. We therefore choose the low TTL value
of 3.

To examine how the TTL affects the accuracy and
bandwidth use, we repeat our experiments with a de-
creased TTL value for each algorithm.

Evaluation

To make it easier to examine the results, the execution
is separated into three phases; initialisation, stabilisation
and query. Each phase lasts for a known time interval.

During the initialisation phase, the nodes are given 30
seconds to start up, configure themselves and read the
topology from a file. After waiting the specified time
interval, the peers connect to each other according to the
read topology. The overlay is then given 180 seconds
in the stabilisation phase. After stabilising, the nodes
enter the query phase, and start sending search queries
at regular intervals. This phase lasts until the experiment
ends.

The peers perform a search every 20 seconds, with
up to 5 seconds random variation. As a result, the delay
between queries varies between 20 and 24 seconds.

When entering the query phase, all peers send their
first query at the same time. This causes traffic bursts
during the first parts of the experiments. After a while,
the variation in delay between the queries leads to
less bursty traffic, as the queries are distributed more
evenly over time between the peers. This gradual change
in traffic pattern allows us to see how the algorithms
respond during high load, how quickly they recover and
how well they function when queries are more evenly
distributed.

With an average delay of 22 seconds, each node sends
2.72 queries per minute. For a 100 node overlay, this

corresponds to 4.53 queries per second.

TABLE I
SUCCESS RATES AND AVERAGE RESPONSE TIMES IN

MILLISECONDS.

Algorithm Success rate Response time
Search+, TTL 2 0.929 3.74
Search+, TTL 3 0.974 3.10
ASAP, TTL 5 0.864 2.65
ASAP, TTL 6 0.886 2.57
Flooding, TTL 4 0.823 279.51
Flooding, TTL 5 0.964 230.05

Table I shows the average response times for each
algorithm. As is expected, when flooding is used, query
times are longest. This is caused by Gnutella nodes
having to wait for both the query and the response to
be routed through the overlay before a match is found.
In Search+ and ASAP, a confirmation message can be
sent directly.

Flooding with TTL 4 has longer response times than
with TTL 5. This is caused by long queues building up in
the central nodes during the initial burst of traffic. With
TTL 5, more messages are routed around the central
nodes than with TTL 4, thus leading to shorter response
times.

ASAP with TTL 5 and 6 has the shortest response
times, with 2.65ms and 2.57ms. Search+ is a bit slower
at 3.10ms and 3.74ms, due to the extra calculations
required on each node. Still, the result is well below
results achieved using flooding.

In Table I, the ratio of successful queries is shown.
A success rate of 1 means that all queries received at
least one match. As expected, flooding reaches more or
less the whole overlay with TTL = 5, and has a high
success rate. Search+ with TTL = 3 has the highest
success rate with 0.974. ASAP on the other hand, does
not quite reach up to the other two, and ends up with a
success rate below 90%.

Our results with ASAP differ from the results found in
the simulation conducted by the authors of [10], where
ASAP seems to consistently reach values around 0.95.
This can in part be explained by two differences in our
setup:

First, in [10] advertisements are distributed with 90%
of nodes already connected. This means that the initial
advertisement sent on join can reach a very high per-
centage of the nodes, as observed in [15]. This could
mean that the success rate of ASAP is largely determined
by the initial distribution of advertisements and that the
effect of the request message that is supposed to drive



TABLE II
AVERAGE BANDWIDTH CONSUMED IN KB.

Algorithm Adv. distr. Search
Search+, TTL 2 23708.67 6385.75
Search+, TTL 3 38763.20 6701.19
ASAP, TTL 5 32406.17 15124.16
ASAP, TTL 6 37375.05 16217.28
Flooding, TTL 4 — 1232089.2
Flooding, TTL 5 — 939114.53

advertisements toward interested nodes is negligible. In
our experiments we use TTL = 1 for the request
message, as recommended in [10], but increasing this
value may yield better results. We did not do this
in our experiments, mainly because of the additional
bandwidth requirements. As we will see later, ASAP
already requires the same bandwidth as Search+. The
authors of [10] mention that they performed their
experiments after an initial ¡¡warm up period¿¿, but they
do not say how long this period is. We repeated our
experiment for 10 hours, but ASAP still did not achieve
more than 90% search accuracy. To further increase the
success rate, ASAP would probably have to improve
its advertisement distribution; either by distributing the
advertisements more effectively when joining the net-
work, or by requesting advertisements from more than
the immediate neighbours. Either way, ASAP relies on
nodes continuing to send queries, as this is what triggers
the distribution process.

Second, when simulated in [10], ASAP yields the best
results in the crawled topology. This topology has 1.28
copies of each document (or service in this context)
on average. This would increase the perceived search
accuracy, as multiple copies of a document increases
the probability of finding one of them. The experiment
described in this paper has only 1 copy of each service.

Bandwidth Usage: Table II shows the average band-
width used by each algorithm during our experiment. The
results are separated in advertisement distribution (three
minutes) and actual search (30 minutes, 4.53 queries per
second).

As expected, Gnutella with a flooding algorithm re-
quires most bandwidth, with 1.2GB for TTL = 5. This
gives a good query success rate, as we saw earlier, but the
amount of traffic will quickly saturate slow links. Both
ASAP and Search+ require considerably less bandwidth.

In Table III, ASAP and Search+ are compared using
the TTL values that give the best search accuracy. Band-
width is shown as average per node in kilobytes. We can
see that although Search+ uses slightly more bandwidth

TABLE III
COMPARISON BETWEEN ASAP AND SEARCH+. BANDWIDTH IS

AVERAGE per node IN KILOBYTES.

Algorithm Distr. bandw. Search bandw. Success
Search+, TTL 3 387.63 67.01 0.974
ASAP, TTL 6 373.75 151.24 0.886

during advertisement distribution, the bandwidth used for
queries with Search+ is less than half of the bandwidth
used by ASAP. This is caused by ASAP continuing to
request new advertisements when queries fail. Search+
will only send new advertisements when there have
been changes in the overlay, i.e. when new content is
published.

When comparing the results in Table I and Table
II, we can see that even if we increase the TTL in
ASAP, neither consumed bandwidth nor success rate
increases significantly. This is probably caused by ASAP
relying on distributing advertisements during join, and
that even with an increased TTL, the advertisements
are not distributed to enough nodes. The bandwidth
spent on advertisement distribution directly affects the
search accuracy. We therefore expect ASAP to use more
bandwidth if the distribution mechanism is improved to
increase the success ratio.

Search+ has a more aggressive advertisement distribu-
tion scheme, which will aggregate advertisements in the
overlay and transfer them to new nodes when they start
subscribing to topics from their neighbours. Thus, nodes
only receive advertisements they have requested. As a
consequence, Search+ consumes less bandwidth, while
still achieving a success rate of 97.4%. The bandwidth
requirements of Search+ can be further reduced by more
than 40% with TTL = 2, if we accept a success rate of
92%, which is still higher than we achieved with ASAP.
Search+ does however require more processing power at
each node.

Findings

As Search+ with TTL = 3 gives the highest accuracy
and the lowest bandwidth consumption, it is the most
suitable candidate for search in low bandwidth networks
such as tactical networks. The average bandwidth con-
sumed by Search+ is 387.63KB per node during adver-
tisement distribution and 67.01KB during search. This
corresponds to 17.22kbit/s and 0.3kbit/s, respectively.

In our experiments the advertisements were exchanged
in a three minute period. This period could be increased
to support lower bandwidths. This shows that it is the-



oretically possible to use Search+ for service discovery
in a tactical network.

RELATED WORK
P2P networks have in fact been proposed as means

of implementing service discovery in many non-military
systems to improve reliability. For example, the projects
SP2A [16], WSPeer [17] and PWSD [18] use P2P
networks for service discovery. However, these described
solutions cannot be directly used in a military context
as additional requirements must be fulfilled. In particu-
lar, tactical networks have severe bandwidth limitations
which need to be taken into account. Existing non-
military solutions are designed to operate on the Internet,
and are thus not designed to conserve bandwidth. P2P
networks have been proposed for military networks [4].
However, this existing work does not provide the nec-
essary implementation details. For example, no specific
search algorithm is described that can be used for an
implementation of the service discovery mechanism.

CONCLUSION AND FUTURE WORK
Our solution is more bandwidth efficient than the

existing solutions that we have evaluated, proving it to
be a strong candidate for a service discovery mechanism
in tactical networks. Also, since we base our solution on
an unstructured rather than a structured P2P protocol we
get a solution that is robust and resilient towards attacks
and partial failure. The main drawback is that it is, as
its other P2P counterparts, based on keyword hashing,
which limits the expressiveness of the search queries.
Thus, coupling the solution with a registry service would
therefore be required to allow more advanced queries to
be executed when needed. We are planning to implement
this connection to a Web services registry in the near
future. Also, when time and resources permit it, we will
evaluate our solution in an actual operational setting.

ACKNOWLEDGEMENTS
We would like to acknowledge Gareth Tyson at Info-

Lab21 and Trude Hafsøe at FFI for valuable feedback
during the experimentation and writing process.

REFERENCES
[1] K. Lund, A. Eggen, D. Hadzic, T. Hafsøe, and F.T. Johnsen.

Using web services to realize service oriented architecture in
military communication networks. Communications Magazine,
IEEE, 45(10):47–53, October 2007.

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the Web Services Web, An
Introduction to SOAP, WSDL, and UDDI. Internet Computing,
IEEE, 6(2):86–93, April 2002.

[3] Sally Fuger, Farrukh Najmi, and Nikola Stojanovic, editors.
ebXML Registry Information Model v3.0. OASIS ebXML
Registry Technical Committee, May 2, 2005.

[4] Tommy Gagnes. Assessing dynamic service discovery in
the network centric battlefield. In Military Communications
Conference, pages 601–614, Orlando, Florida, USA, Oct 2007.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), volume 11, pages 329–350. Heidel-
berg, 2001.

[6] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 149–160. ACM New York,
NY, USA, 2001.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker.
A scalable content-addressable network. In Proceedings of the
2001 SIGCOMM conference, volume 31, pages 161–172. ACM
New York, NY, USA, 2001.

[8] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph. Tapestry: An
infrastructure for fault-resilient wide-area location and routing.
Technical report, Technical Report UCB//CSD-01-1141, UC
Berkeley, 2001.

[9] Clip2. The gnutella protocol specification v0.4, document
revision 1.2. http://www9.limewire.com/developer/gnutella
protocol 0.4.pdf, visited September 9th, 2008.

[10] Peng Gu, Jim Wang, and Hailong Cai. ASAP: An
advertisement-based search algorithm for unstructured peer-to-
peer systems. In International Conference on Parallel Process-
ing (ICPP), September 10-14, page 8, Xian, China, 2007.

[11] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[12] G. Tyson, A. Mauthe, T. Plagemann, and Y. El-khatib. Juno:
Reconfigurable Middleware for Heterogeneous Content Net-
working. In 5th International Workshop on Next Generation
Networking Middleware (NGNM), September 22-26, Samos
Island, Greece, 2008.

[13] Anders Fongen, M. Gjellerud, and Eli Winjum. A military
mobility model for manet research. In Parallel and Distributed
Computing and Networks (PDCN 2009), February 16 – 18,
Innsbruck, Austria, 2009.

[14] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling
in random networks. Science, 289:509, 1999.

[15] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne.
The cost of peer discovery and searching in the gnutella peer-
to-peer file sharing protocol. In Proceedings Ninth IEEE
International Conference on Networks, 10-12th October, pages
263–268, Bangkok, Thailand, 2001.

[16] M. Amoretti, F. Zanichelli, and G. Conte. SP2A: a service-
oriented framework for P2P-based grids. In In proceedings
of the 3rd International Workshop on Middleware for Grid
Computing (MGC05), Grenoble, France, 2005.

[17] Andrew Harrison and Ian Taylor. WSPeer - An Interface to
Web Service Hosting and Invocation. In HIPS Joint Workshop
on High-Performance Grid Computing and High-Level Parallel
Programming Models, IPDPS, Denver, Colorado, USA, 2005.

[18] Y. Li, F. Zou, Z. Wu, and F. Ma. PWSD: A scalable Web Service
Discovery architecture based on peer-to-peer overlay network,
pages 291–300. Springer Berlin / Heidelberg, 2004.


